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Motivation

“Computer Organization and Design”. D. A: Patterson, J. L. Hennessy, 2014
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Motivation

Instruction-level parallelism 
Memory access (latency)
Power consumption
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Motivation
§ Dennard’s scaling vs Moore’s Law

Intel Xeon Platinum 8180
Q3’17
14 nm
2.5 GHz
TDP 205 W
28 cores/56 threads
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Motivation
§ Reduce energy consumption!
§ Costs over lifetime of an HPC facility often exceed acquisition costs
§ Hazard for health and environment
§ Heat reduces hardware reliability

§ Personal view
§ Hardware features some power-saving mechanisms (from mobile/embedded to desktop/server)
§ Scientific apps. are in general energy-oblivious
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Outline
§ What can I do? … A recipe to saving energy:

Optimize performance!!!

1. Choose the “right” hardware
2. Dynamic Voltage-Frequency Scaling (DVFS)
3. Dynamic Concurrency Throttling (DCT)
4. Avoid polling
5. Near Threshold Voltage Computing (NTVC)
6. Energy-proportional hardware
7. Virtualization of HPC resources
8. Approximate computing/adaptive precision
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Outline
0. Disclaimer
§ DISCLAIMER
§ Sorry, most of the examples come from linear algebra:
§ Solution of dense/sparse linear systems via direct/iterative methods
§ Solution of eigenvalue problems

§ …but the message carries over to many other math kernels for scientific and engineering applications
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1. Choose the right hardware

§ The Conjugate Gradient (CG) method is representative of the 
performance/energy efficiency attained by real scientific applications (HPCCG 
benchmark)

§ Performance depends on:
§ Target architecture: frequency-voltage setting, #cores, arithmetic floating-point precision, etc.
§ Compiler optimizations
§ Sparsity pattern 
§ Storage format
§ Programmer’s optimization effort
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1. Choose the right hardware
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1. Choose the right hardware

§ Optimization effort:
§ Multicore x86-based: Intel MKL with CSR and BCSR, and CSB library
§ Other multicore: CSR+OpenMP
§ GPUs: ELLPACK & SELL-P, with further optimizations (described in last block)
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1. Choose the right hardware
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2. DVFS

§ Dense linear algebra kernels are the building blocks for many scientific and 
engineering applications: _GEMV, _GEMM

§ (Dense) LU factorization is the basis for the LINPACK benchmark 
(Top500/Green500 lists): _GETRF

§ Routines are highly optimized as part of vendor implementations of 
BLAS/LAPACK (Intel MKL, AMD ACML, IBM ESSL, NVIDIA CuBLAS, etc.)
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2. DVFS

§ Current processors adhere to the ACPI (Advanced Configuration and Power 
Interface) standard:

§ P-states: 
§ Adjust voltage-frequency to the workload in execution
§ Control by the Linux kernel or user

§ C-states: 
§ Suspend processor components to save energy
§ Can waste energy if CPU needs to be activated soon
§ No control by the user
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2. DVFS

§ P-states
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2. DVFS

§ P-states
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2. DVFS

§ Control of P-states by user possible via cpufreq, but too slow:
§ 225 μseconds in Intel E5-2620 
§ Directly writing in MSR (in μseconds):
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3. DCT

§ Solution of eigenvalue problems is one of the cornerstones for 
scientific/engineering applications

§ In many cases, the problem is dense and presents a symmetric structure
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3. DCT

§ Control the number of threads in execution
§ More threads does not necessarily mean faster
§ Even if slightly faster, (or at least not slower,) it may not be more energy efficient
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3. DCT

§ Intel E5-2620. DSYMV:



Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

3. DCT

§ Intel E5-2620. DSYR2K:



Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

3. DCT

§ Control with fine granularity may be necessary:
§ Reduction to tridiagonal from via _SYTRD (key for the solution of dense eigenvalue problems) spends 

half of its flops in _SYMV and the other half in _SYR2K
§ Subproblems become progressively smaller, till they fit into the cache
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4. Avoid polling

§ Do nothing well!
§ Polling ensures a rapid reaction of CPU to status changes, but prevents it from 

entering energy-saving C-states
§ Wait for other tasks to complete (task-parallelism, synchronization)
§ CPU-GPU execution
§ MPI blocking routines
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4. Avoid polling

§ C-states (Core i7-Nehalem, similar for others)
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4. Avoid polling

§ ILUPACK’s PCG on Intel Xeon E5504 (2x4 cores)
Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

54.342.740 us 64.234.465 us
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4. Avoid polling

§ ILUPACK’s PCG on Intel Xeon E5504 (2x4 cores)
Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

56.342.740 us 65.876.075 us
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Thread 8
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4. Avoid polling

§ CG on GPU: Intel Core i7-3770K + NVIDIA GeForce GTX480
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5. NTVC

§ Dynamic power is proportional to V^2 f

§ Undervolting: Reduce V, but maintain f
§ NTVC: Reduce (V,f) in the same proportion
§ For some applications, reducing f does not impact performance
§ For others, a linear decrease in performance is expected
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5. NTVC

§ Operating near the voltage threshold may introduce errors
§ Integrate fault-tolerance into software (applications)
§ Check-point + restart
§ Modular redundancy
§ Algorithmic-based fault tolerance (ABFT)

§ What is the energy trade-off?
§ Move from error-free (VR,fR) → error-prone (VA,fA)
§ Detection overhead Od (even if no errors occur)
§ Correction overhead Oc (proportional to error rate)
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5. NTVC

§ For undervolting, any DLA and architecture:
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5. NTVC

§ For NTVC, assuming linear relation between performance and f:

§ Same relation for
compute-bound kernels

§ …but iso-energy more 
difficult for memory-
bound kernels
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6. Energy-proportional hardware

§ Power consumption should be proportional to use of resources

“The case for energy-proportional computing”. L. A. Barroso, U. Hölzle, 
IEEE Computer, 2007
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6. Energy-proportional hardware

§ Stencil computation on Intel Xeon E5-2620 (2x6 cores)

Power
(W)



Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

7. Virtualization of HPC resources

§ Servers seldom operate at 100% of their maximum utilization level

“The case for energy-proportional computing”. L. A. Barroso, U. Hölzle, 
IEEE Computer, 2007

Average CPU utilization of more than 
5,000 servers during a six-month 
period



Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

7. Virtualization of HPC resources

§ Same for GPUs in a cluster:
§ Not all applications can run on a GPU
§ Not all parts of application’s code benefit from a GPU

§ Virtualization of accelerators
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8. Approximate computing

§ Some applications do not need a “fully accurate” answer:
§ Signal & video processing
§ Probabilistic inference 
§ Service profiling 
§ Monte Carlo simulation 
§ Machine learning

§ Trade off accuracy for energy
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Adaptive-precision algorithms for sparse linear algebra

§ Numerical linear algebra for scientific computing?
§ Tiny errors (round-off) can rapidly “aggregate”
§ Double precision is the standard

§ Can we work in reduced precision (most of the time), but still compute a full-
precision solution?

§ Adaptive precision
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Adaptive-precision algorithms for sparse linear algebra

§ Preconditioned Conjugate Gradient (PCG)
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Adaptive-precision algorithms for sparse linear algebra

§ Customize precision:
§ CG is a memory-bounded algorithm: Cost comes from moving data, not arithmetic

§ Storage for CG iteration variables in MPIR: matrix, recurrence vectors
§ Storage for block-Jacobi preconditioner

“Computing’s energy 
problem”. M. Horowitz, 
2014
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Adaptive-precision algorithms for sparse linear algebra

§ Customize precision:
§ CG is a memory-bounded algorithm: Cost comes from moving data, not arithmetic

§ Storage for CG iteration variables in MPIR: matrix, recurrence vectors
§ Storage for block-Jacobi preconditioner

“Computing’s energy 
problem”. M. Horowitz, 
2014
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Mixed precision iterative refinement

§ Iterative refinement (IR) is a technique to improve the accuracy of an initial 
solution !":

§ Any inner solver: dense/sparse factorization…
even an iterative Krylov(-type) solver

§ In machine precision #, provided #$(&) ≤ 1, IR eventually produces an 
accurate solution to full precision #
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Mixed precision iterative refinement

§ On many architectures, IR can be efficiently combined with a mixed precision 
(single-double, half-double, half-single) scheme

§ Most of the cost is in the inner solver
§ Accuracy is improved by the outer refinement process

Reduced precision
Extended precision

Extended precision
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Mixed precision iterative refinement

§ MPIR be efficiently combined with an iterative Krylov inner solver
§ Maintain convergence rate by avoiding numerical pitfalls in the recurrence residual due to finite 

precision
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Mixed precision iterative refinement

§ For Krylov solvers applied to sparse linear systems, the theoretical 
cost/energy/time is in moving data, not in arithmetic
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Mixed precision iterative refinement
Outline
§ Residual replacement for Krylov solvers
§ Cost for Krylov solvers
§ Modular precision format
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Residual replacement for Krylov solvers

§ PCG
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Residual replacement for Krylov solvers

§ PCG

Recurrence residual True residual
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Residual replacement for Krylov solvers

§ Finite precision causes divergence between recurrence vs true residuals
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Residual replacement for Krylov solvers

§ Finite precision causes divergence between recurrence vs true residuals
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The problem is that the recurrence residual induces 
us to continue iterating when the true residual 
has stagnated:

Waste of work!!!
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Residual replacement for Krylov solvers

§ Finite precision causes divergence between recurrence vs true residuals
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Solution: restart the iteration with the true residual

This is known as residual replacement (RR)
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Residual replacement for Krylov solvers

§ Divergence problem can be tackled via RR:
§ Replace always (at every iteration): doubles the cost per iteration and may deteriorate the 

convergence of the iteration
§ Replace periodically (every ! iterations): may deteriorate the convergence of the iteration
§ Compute explicit deviation at every iteration and replace if needed: doubles the cost per iteration
§ Estimate deviation and replace if needed

H. A. Van der Vorst, Q. Ye. “Residual replacement strategies for Krylov subspace iterative 
methods for the convergence of true residuals.” SIAM J. Sci. Comput., 22(3), 2000
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Residual replacement for Krylov solvers

§ Van der Vorst and Ye (VY), 2000. Keep track of accumulated deviation:

§ Then, perform RR if the following three conditions hold

§ Compared with others, VY’s RR technique:
§ Preserves convergence mechanism of the iteration
§ Ensures sufficiently small deviations between recurrence/true residuals
§ It is cheap and easy to add to existing Krylov implementations

H. A. Van der Vorst, Q. Ye. “Residual replacement strategies for Krylov subspace iterative 
methods for the convergence of true residuals.” SIAM J. Sci. Comput., 22(3), 2000
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Residual replacement for Krylov solvers

§ Explicit residual deviation (ERD): Test periodically (i.e., every ! iterations)

§ Computing the residual explicitly is expensive (SpMV), but it can be done in reduced precision

§ Cost can be further reduced by performing the residual calculation together with SpMV for 
inner solver

§ If deviation exceeds the threshold, stop the inner solver and start a new iteration of refinement (outer 
level) → enforces a residual replacement in extended precision

H. Anzt et al. “Residual replacement in mixed precision iterative refinement for sparse 
linear systems.” 1st ATCET Workshop, 2018
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Cost for Krylov solvers

§ Premises of cost model:
§ For a memory-bound algorithm, such as PCG applied to a sparse linear system, the “cost” is 

dominated by data movement while floating-point arithmetic is irrelevant
§ If cost = execution time, arithmetic cost is minor (memory wall) and can be overlapped with 

communication
§ If cost = energy, accesses to main memory are much more expensive than arithmetic

“Computing’s energy 
problem”. M. Horowitz, 
2014
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Cost for Krylov solvers

§ Premises (cont’d):
§ After each particular operation, data does not remain in cache (reasonable if vectors are long 

enough)
§ Costs are linearly dependent on the bit-length of data
§ Problem of size !, with sparse matrix stored in CSR format consisting of !" nonzero entries
§ Simple Jacobi preconditioner for CG
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Cost for Krylov solvers

§ Cost of sparse matrix-vector product (SpMV, CSR format) using data with xx 
bits in cost-units (cus) in terms of bit transfers:

§ PCG solver operating with xx bits:

for (i=0; i<m; i++) {
tmp = 0;
for (j=row_ptr[i]; j<row_ptr[i+1]; j++)
tmp += val[j] * x[col_idx[j]];

y[i] = tmp;
}
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Cost for Krylov solvers

§ For MPIR-VY, cost depends on:
§ #IS: number of iterations of inner solver
§ #RR: total number of residual replacements
§ #RS: number of iterative refinement steps

§ For example, using (32,64) mixed precision:
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Cost for Krylov solvers

§ Cost of ERD:
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Cost for Krylov solvers

§ VY vs EDR:
§ VR-RR incurs detection overhead at each iteration (test replacement condition) and pays correction 

overhead in case RR is necessary
§ EDR-RR incurs detection overhead only every ! iterations  (periodicity of the test), risking to waste 

work in case of stagnation from last test
§ Detection techniques are different and, therefore, also are numerical effects and overhead



Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

§ Setup:
§ 123 symmetric positive definite matrices from SuiteSparse Matrix Collection (formerly UFMC)

§ Baseline solver: PCG in double precision

§ All arithmetic done in double precision

§ For MPIR variants, the coefficient matrix, the preconditioner and all iteration vectors used in the 
inner solver are stored in single precision: reduced transfer cost!

§ For EDR-RR, the test is performed every ! = 100 iterations, and the maximum number of RR is set to 
10

§ Cost take into account the actual number of iterations to obtain an absolute residual error below 
10-7
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Cost for Krylov solvers
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Cost for Krylov solvers
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Modular precision format

§ Decouple arithmetic from storage formats:
§ FPUs only support a limited number of IEEE 754 formats (single, double and, in some architectures, 

half)
§ … but we are free to store the data in memory in any customized format

§ Remember: As a memory-bound algorithm, PCG is limited by memory 
bandwidth (i.e., how many bit are used to store the data)
§ Extended can be double
§ Reduced can be, e.g., 16, 24, 32, 40, 48, 56 bits
§ Maintain a single copy of the matrix with “multiple precisions” via segments

T. Grützmacher, H:. Anzt. “A modular precision format for decoupling arithmetic format 
and storage format. To appear in HeteroPar 2018
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Adaptive-precision algorithms for sparse linear algebra

§ Customize precision:
§ CG is a memory-bounded algorithm: Cost comes from moving data, not arithmetic

§ Storage for CG iteration variables in MPIR: matrix, recurrence vectors
§ Storage for block-Jacobi preconditioner

“Computing’s energy 
problem”. M. Horowitz, 
2014
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§ Jacobi method based on diagonal scaling:

§ Can be used as iterative solver:  

§ Can be used as preconditioner:                              ,                  

x(k+1) = x(k) + P�1b� P�1Ax(k)

Ã = P�1A

Ax = b , Ãx = b̃

b̃ = P�1b

P = diag(A)

Block-Jacobi preconditioning
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§ Jacobi method based on diagonal scaling:

§ Can be used as iterative solver:  

§ Can be used as preconditioner: 

• Block-Jacobi is based on block-diagonal scaling:

• Large set of small diagonal blocks.

• Each block corresponds to one (small) linear system.

• Larger blocks typically improve convergence.

• Larger blocks make block-Jacobi more expensive.

Extreme case: one block of matrix size.

x(k+1) = x(k) + P�1b� P�1Ax(k)

Ã = P�1A

Ax = b , Ãx = b̃

b̃ = P�1b

P = diag(A)

Block-Jacobi preconditioning
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Block-Jacobi preconditioning

• Block-Jacobi method typically used as preconditioner inside Krylov solver.

• Target: large, sparse linear systems.

• FEM discretizations often carry a block-structure (multiple variables per node).

• “Natural blocks” of small size (8, 12,...).

• System matrix often stored in sparse data structure (CSR).
Generate preconditioner before iterative solver starts.

Apply the preconditioner in every solver iteration via: y := P�1x
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Inversion of diagonal blocks
2m3 FLOPS for block of size m

Matrix-vector multiply per block gemv

Factorization of diagonal blocks
2/3 m3 FLOPS for block of size m

2 triangular solves per block trsv
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Block-Jacobi preconditioning

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.
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Block-Jacobi preconditioning

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

§ Cost of Inversion:
2mi

3 FLOPs for block of size mi.

X

blocks

2m3
i
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Block-Jacobi preconditioning

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

§ Cost of Inversion:
2mi

3 FLOPs for block of size mi.

§ Cost of Preconditioner application:
mi

2 FLOPs for block of size mi :

§ Total memory consumption:

X

blocks

2m3
i

X

blocks

m2
i

X

blocks

m2
i
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Block-Jacobi preconditioning

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

§ Cost of Inversion:
2mi

3 FLOPs for block of size mi.

§ Cost of Preconditioner application:
mi

2 FLOPs for block of size mi :

• Total memory consumption:

§ Energy balance for one preconditioner application (DP)*:

X

blocks

2m3
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X

blocks

m2
i

X

blocks

m2
i

X

blocks

m2
i · (100 + 4800)

Computation/2 data read

*John Shalf (LBNL)
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Block-Jacobi preconditioning

§ Cost of Inversion:
2mi

3 FLOPs for block of size mi.

§ Cost of Preconditioner application:
mi

2 FLOPs for block of size mi :

• Total memory consumption:

§ Energy balance for one preconditioner application (DP)*:

X

blocks

2m3
i

X

blocks

m2
i

X

blocks

m2
i

X

blocks

m2
i · (100 + 4800)

Computation/2 data read

*John Shalf (LBNL)

Mixed Precision Idea:

• Do all calculations in working precision
• Store the block-Jacobi matrix in reduced precision

• Benefit from faster data access
• Benefit from reduced data read cost

Implications:
• Reduced preconditioner quality

• Need for more Krylov solver iterations
• Potential loss of regularity (breakdown)
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Block-Jacobi preconditioning

§ 70 matrices from the SuiteSparse Matrix Collection

§ Use block-size 24 with Super-Variable agglomeration (24 is upper bound for size of blocks)

§ Report conditioning of all arising diagonal blocks
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Block-Jacobi preconditioning
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Block-Jacobi preconditioning
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double prec. block-Jacobi
single prec. block-Jacobi

Block-Jacobi preconditioning

Overhead compared to double precision algorithm.

Smaller is better!
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Adaptive-precision Block-Jacobi preconditioning

Adaptive Precision Idea:

• All computations use double precision!
• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision
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Adaptive-precision Block-Jacobi preconditioning

*John Shalf (LBNL)

• 4800 pJ for double precision  (64 bit)

• 2400 pJ for single precision / integers  (32 bit)

• 1200 pJ for half precision   (16 bit)

Energy model:

Adaptive Precision Idea:

• All computations use double precision!
• Store distinct blocks in different formats

• Use single precision as standard storage format

• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning

of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision
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Adaptive-precision Block-Jacobi preconditioning

Operation Memory volume # per CG loop Energy est.

CSR-SpMV nz double  + nz int + n int + 2n double 1 (nz + 2n) * 4800 pJ + (nz + n) * 2400 pJ

axpy 3n double 3 9n * 4800 pJ

dot 2n double 2 4n * 4800 pJ

preconditioner [ used format ] 1 * ?

How much data we need to read/write in a Conjugate Gradient (CG) loop:

Adaptive Precision Idea:

• All computations use double precision!

• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision
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Adaptive-precision Block-Jacobi preconditioning

Adaptive Precision Idea:

• All computations use double precision!
• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

Energy model for block-Jacobi-CG

• We ignore computational cost, only memory access
• No data (matrix / vector) is cached, only DRAM reads
• CG outer solver (in DP)
• Adaptive precision for the block-Jacobi preconditioner

Block-Jacobi CG

• Ax=b with  x:=0  and  b:=A*1

• Relative residual stopping crit. 1e-9
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Adaptive-precision Block-Jacobi preconditioning

Adaptive Precision Idea:

• All computations use double precision!
• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision
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Outline

§ A recipe to saving energy: Optimize performance!!!

… but other “chefs” may propose a different recipe

1. Choose the “right” hardware
2. Dynamic Voltage-Frequency Scaling (DVFS)
3. Dynamic Concurrency Throttling (DCT)
4. Avoid polling
5. Near Threshold Voltage Computing (NTVC)
6. Energy-proportional hardware
7. Virtualization of HPC resources
8. Approximate computing/adaptive precision



Adaptive-Precision Algorithms for Sparse Linear Algebra

Enrique S. QUINTANA-ORTÍ
Professor of Computer Architecture
Group leader High Performance Computing & Architectures (HPC&A) group
http://www.uji.es/~quintana


