
Adaptive-Precision Algorithms for Sparse Linear Algebra

Enrique S. QUINTANA-ORTÍ
Professor of Computer Architecture
Group leader High Performance Computing & Architectures (HPC&A) group
http://www.uji.es/~quintana

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Motivation

“Computer Organization and Design”. D. A: Patterson, J. L. Hennessy, 2014

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Motivation

Instruction-level parallelism
Memory access (latency)
Power consumption

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Motivation
§ Dennard’s scaling vs Moore’s Law

Intel Xeon Platinum 8180
Q3’17
14 nm
2.5 GHz
TDP 205 W
28 cores/56 threads

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Motivation
§ Reduce energy consumption!
§ Costs over lifetime of an HPC facility often exceed acquisition costs
§ Hazard for health and environment
§ Heat reduces hardware reliability

§ Personal view
§ Hardware features some power-saving mechanisms (from mobile/embedded to desktop/server)
§ Scientific apps. are in general energy-oblivious

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Outline
§ What can I do? … A recipe to saving energy:

Optimize performance!!!

1. Choose the “right” hardware
2. Dynamic Voltage-Frequency Scaling (DVFS)
3. Dynamic Concurrency Throttling (DCT)
4. Avoid polling
5. Near Threshold Voltage Computing (NTVC)
6. Energy-proportional hardware
7. Virtualization of HPC resources
8. Approximate computing/adaptive precision

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Outline
0. Disclaimer
§ DISCLAIMER
§ Sorry, most of the examples come from linear algebra:
§ Solution of dense/sparse linear systems via direct/iterative methods
§ Solution of eigenvalue problems

§ …but the message carries over to many other math kernels for scientific and engineering applications

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

1. Choose the right hardware

§ The Conjugate Gradient (CG) method is representative of the
performance/energy efficiency attained by real scientific applications (HPCCG
benchmark)

§ Performance depends on:
§ Target architecture: frequency-voltage setting, #cores, arithmetic floating-point precision, etc.
§ Compiler optimizations
§ Sparsity pattern
§ Storage format
§ Programmer’s optimization effort

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

1. Choose the right hardware

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

1. Choose the right hardware

§ Optimization effort:
§ Multicore x86-based: Intel MKL with CSR and BCSR, and CSB library
§ Other multicore: CSR+OpenMP
§ GPUs: ELLPACK & SELL-P, with further optimizations (described in last block)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

1. Choose the right hardware

AIL AMC IAT INH ISB ARM FER KEP QDR TIC
0

5

10

15

20

Optimized w.r.t. runtime

Architecture

G
FL

O
PS

AIL AMC IAT INH ISB ARM FER KEP QDR TIC
0

0.1

0.2

0.3

Optimized w.r.t. runtime

Architecture
G

FL
O

PS
/W

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

AIL AMC IAT INH ISB ARM FER KEP QDR TIC
0

5

10

15

20

Optimized w.r.t. net energy

Architecture

G
FL

O
PS

1. Choose the right hardware

AIL AMC IAT INH ISB ARM FER KEP QDR TIC
0

0.1

0.2

0.3

Optimized w.r.t. net energy

Architecture
G

FL
O

PS
/W

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

2. DVFS

§ Dense linear algebra kernels are the building blocks for many scientific and
engineering applications: _GEMV, _GEMM

§ (Dense) LU factorization is the basis for the LINPACK benchmark
(Top500/Green500 lists): _GETRF

§ Routines are highly optimized as part of vendor implementations of
BLAS/LAPACK (Intel MKL, AMD ACML, IBM ESSL, NVIDIA CuBLAS, etc.)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

2. DVFS

§ Current processors adhere to the ACPI (Advanced Configuration and Power
Interface) standard:

§ P-states:
§ Adjust voltage-frequency to the workload in execution
§ Control by the Linux kernel or user

§ C-states:
§ Suspend processor components to save energy
§ Can waste energy if CPU needs to be activated soon
§ No control by the user

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

2. DVFS

§ P-states

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

2. DVFS

§ P-states

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

2. DVFS

§ Control of P-states by user possible via cpufreq, but too slow:
§ 225 μseconds in Intel E5-2620
§ Directly writing in MSR (in μseconds):

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

3. DCT

§ Solution of eigenvalue problems is one of the cornerstones for
scientific/engineering applications

§ In many cases, the problem is dense and presents a symmetric structure

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

3. DCT

§ Control the number of threads in execution
§ More threads does not necessarily mean faster
§ Even if slightly faster, (or at least not slower,) it may not be more energy efficient

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

3. DCT

§ Intel E5-2620. DSYMV:

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

3. DCT

§ Intel E5-2620. DSYR2K:

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

3. DCT

§ Control with fine granularity may be necessary:
§ Reduction to tridiagonal from via _SYTRD (key for the solution of dense eigenvalue problems) spends

half of its flops in _SYMV and the other half in _SYR2K
§ Subproblems become progressively smaller, till they fit into the cache

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

4. Avoid polling

§ Do nothing well!
§ Polling ensures a rapid reaction of CPU to status changes, but prevents it from

entering energy-saving C-states
§ Wait for other tasks to complete (task-parallelism, synchronization)
§ CPU-GPU execution
§ MPI blocking routines

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

4. Avoid polling

§ C-states (Core i7-Nehalem, similar for others)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

4. Avoid polling

§ ILUPACK’s PCG on Intel Xeon E5504 (2x4 cores)
Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

54.342.740 us 64.234.465 us

Watts

67

193

54.869.754 us 64.234.465 us

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

54.342.740 us 64.234.465 us

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

4. Avoid polling

§ ILUPACK’s PCG on Intel Xeon E5504 (2x4 cores)
Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

56.342.740 us 65.876.075 us

30

189

Watts

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

56.342.740 us 65.876.075 us

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

4. Avoid polling

§ CG on GPU: Intel Core i7-3770K + NVIDIA GeForce GTX480

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

5. NTVC

§ Dynamic power is proportional to V^2 f

§ Undervolting: Reduce V, but maintain f
§ NTVC: Reduce (V,f) in the same proportion
§ For some applications, reducing f does not impact performance
§ For others, a linear decrease in performance is expected

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

5. NTVC

§ Operating near the voltage threshold may introduce errors
§ Integrate fault-tolerance into software (applications)
§ Check-point + restart
§ Modular redundancy
§ Algorithmic-based fault tolerance (ABFT)

§ What is the energy trade-off?
§ Move from error-free (VR,fR) → error-prone (VA,fA)
§ Detection overhead Od (even if no errors occur)
§ Correction overhead Oc (proportional to error rate)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8 0.85 0.9 0.95 1

E
rr

o
r

co
rr

e
ct

io
n
 o

ve
rh

e
a
d
 (

O
c)

Normalized voltage w.r.t. VR

Iso-energy curves for undervolting (fA=fR)

Od=0.01
Od=0.05
Od=0.10
Od=0.25

5. NTVC

§ For undervolting, any DLA and architecture:

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

5. NTVC

§ For NTVC, assuming linear relation between performance and f:

§ Same relation for
compute-bound kernels

§ …but iso-energy more
difficult for memory-
bound kernels

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8 0.85 0.9 0.95 1

E
rr

o
r

co
rr

e
ct

io
n
 o

ve
rh

e
a
d
 (

O
c)

Normalized voltage w.r.t. VR

Iso-energy curves for undervolting (fA=fR)

Od=0.01
Od=0.05
Od=0.10
Od=0.25

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

6. Energy-proportional hardware

§ Power consumption should be proportional to use of resources

“The case for energy-proportional computing”. L. A. Barroso, U. Hölzle,
IEEE Computer, 2007

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

6. Energy-proportional hardware

§ Stencil computation on Intel Xeon E5-2620 (2x6 cores)

Power
(W)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

7. Virtualization of HPC resources

§ Servers seldom operate at 100% of their maximum utilization level

“The case for energy-proportional computing”. L. A. Barroso, U. Hölzle,
IEEE Computer, 2007

Average CPU utilization of more than
5,000 servers during a six-month
period

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

7. Virtualization of HPC resources

§ Same for GPUs in a cluster:
§ Not all applications can run on a GPU
§ Not all parts of application’s code benefit from a GPU

§ Virtualization of accelerators

PC
I-e C

PU

GPU GPU
mem

M
ain

M
em

ory

Network

GPU GPU
mem

Interconnection Network

PC
I-e C

PU

GPU GPU
mem

M
ain

M
em

ory

Network

GPU GPU
mem

PC
I-e C

PU

GPU GPU
mem

M
ain

M
em

ory

Network

GPU GPU
mem

PC
I-e C

PU

GPU GPU
mem

M
ain

M
em

ory

Network

GPU GPU
mem

PC
I-e C

PU

GPU GPU
mem

M
ain

M
em

ory

Network

GPU GPU
mem

PC
I-e C

PU

GPU GPU
mem

M
ain

M
em

ory

Network

GPU GPU
mem

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

8. Approximate computing

§ Some applications do not need a “fully accurate” answer:
§ Signal & video processing
§ Probabilistic inference
§ Service profiling
§ Monte Carlo simulation
§ Machine learning

§ Trade off accuracy for energy

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision algorithms for sparse linear algebra

§ Numerical linear algebra for scientific computing?
§ Tiny errors (round-off) can rapidly “aggregate”
§ Double precision is the standard

§ Can we work in reduced precision (most of the time), but still compute a full-
precision solution?

§ Adaptive precision

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision algorithms for sparse linear algebra

§ Preconditioned Conjugate Gradient (PCG)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision algorithms for sparse linear algebra

§ Customize precision:
§ CG is a memory-bounded algorithm: Cost comes from moving data, not arithmetic

§ Storage for CG iteration variables in MPIR: matrix, recurrence vectors
§ Storage for block-Jacobi preconditioner

“Computing’s energy
problem”. M. Horowitz,
2014

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision algorithms for sparse linear algebra

§ Customize precision:
§ CG is a memory-bounded algorithm: Cost comes from moving data, not arithmetic

§ Storage for CG iteration variables in MPIR: matrix, recurrence vectors
§ Storage for block-Jacobi preconditioner

“Computing’s energy
problem”. M. Horowitz,
2014

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Mixed precision iterative refinement

§ Iterative refinement (IR) is a technique to improve the accuracy of an initial
solution !":

§ Any inner solver: dense/sparse factorization…
even an iterative Krylov(-type) solver

§ In machine precision #, provided #$(&) ≤ 1, IR eventually produces an
accurate solution to full precision #

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Mixed precision iterative refinement

§ On many architectures, IR can be efficiently combined with a mixed precision
(single-double, half-double, half-single) scheme

§ Most of the cost is in the inner solver
§ Accuracy is improved by the outer refinement process

Reduced precision
Extended precision

Extended precision

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Mixed precision iterative refinement

§ MPIR be efficiently combined with an iterative Krylov inner solver
§ Maintain convergence rate by avoiding numerical pitfalls in the recurrence residual due to finite

precision

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e

si
d

u
a

l

Iteration

Matrix: G3_circuit

20 mantissa bits, no residual check

Recurrence (double prec.)
Recurrence (low prec.)

True residual (low prec.)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Mixed precision iterative refinement

§ For Krylov solvers applied to sparse linear systems, the theoretical
cost/energy/time is in moving data, not in arithmetic

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Mixed precision iterative refinement
Outline
§ Residual replacement for Krylov solvers
§ Cost for Krylov solvers
§ Modular precision format

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Residual replacement for Krylov solvers

§ PCG

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Residual replacement for Krylov solvers

§ PCG

Recurrence residual True residual

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Residual replacement for Krylov solvers

§ Finite precision causes divergence between recurrence vs true residuals

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
si

d
u
a
l

Iteration

Matrix: G3_circuit

20 mantissa bits, no residual check

Recurrence (double prec.)
Recurrence (low prec.)

True residual (low prec.)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Residual replacement for Krylov solvers

§ Finite precision causes divergence between recurrence vs true residuals

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
si

d
u
a
l

Iteration

Matrix: G3_circuit

20 mantissa bits, no residual check

Recurrence (double prec.)
Recurrence (low prec.)

True residual (low prec.)

The problem is that the recurrence residual induces
us to continue iterating when the true residual
has stagnated:

Waste of work!!!

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Residual replacement for Krylov solvers

§ Finite precision causes divergence between recurrence vs true residuals

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e
si

d
u
a
l

Iteration

Matrix: G3_circuit

20 mantissa bits, no residual check

Recurrence (double prec.)
Recurrence (low prec.)

True residual (low prec.)

Solution: restart the iteration with the true residual

This is known as residual replacement (RR)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Residual replacement for Krylov solvers

§ Divergence problem can be tackled via RR:
§ Replace always (at every iteration): doubles the cost per iteration and may deteriorate the

convergence of the iteration
§ Replace periodically (every ! iterations): may deteriorate the convergence of the iteration
§ Compute explicit deviation at every iteration and replace if needed: doubles the cost per iteration
§ Estimate deviation and replace if needed

H. A. Van der Vorst, Q. Ye. “Residual replacement strategies for Krylov subspace iterative
methods for the convergence of true residuals.” SIAM J. Sci. Comput., 22(3), 2000

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Residual replacement for Krylov solvers

§ Van der Vorst and Ye (VY), 2000. Keep track of accumulated deviation:

§ Then, perform RR if the following three conditions hold

§ Compared with others, VY’s RR technique:
§ Preserves convergence mechanism of the iteration
§ Ensures sufficiently small deviations between recurrence/true residuals
§ It is cheap and easy to add to existing Krylov implementations

H. A. Van der Vorst, Q. Ye. “Residual replacement strategies for Krylov subspace iterative
methods for the convergence of true residuals.” SIAM J. Sci. Comput., 22(3), 2000

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Residual replacement for Krylov solvers

§ Explicit residual deviation (ERD): Test periodically (i.e., every ! iterations)

§ Computing the residual explicitly is expensive (SpMV), but it can be done in reduced precision

§ Cost can be further reduced by performing the residual calculation together with SpMV for
inner solver

§ If deviation exceeds the threshold, stop the inner solver and start a new iteration of refinement (outer
level) → enforces a residual replacement in extended precision

H. Anzt et al. “Residual replacement in mixed precision iterative refinement for sparse
linear systems.” 1st ATCET Workshop, 2018

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

§ Premises of cost model:
§ For a memory-bound algorithm, such as PCG applied to a sparse linear system, the “cost” is

dominated by data movement while floating-point arithmetic is irrelevant
§ If cost = execution time, arithmetic cost is minor (memory wall) and can be overlapped with

communication
§ If cost = energy, accesses to main memory are much more expensive than arithmetic

“Computing’s energy
problem”. M. Horowitz,
2014

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

§ Premises (cont’d):
§ After each particular operation, data does not remain in cache (reasonable if vectors are long

enough)
§ Costs are linearly dependent on the bit-length of data
§ Problem of size !, with sparse matrix stored in CSR format consisting of !" nonzero entries
§ Simple Jacobi preconditioner for CG

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

§ Cost of sparse matrix-vector product (SpMV, CSR format) using data with xx
bits in cost-units (cus) in terms of bit transfers:

§ PCG solver operating with xx bits:

for (i=0; i<m; i++) {
tmp = 0;
for (j=row_ptr[i]; j<row_ptr[i+1]; j++)
tmp += val[j] * x[col_idx[j]];

y[i] = tmp;
}

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

§ For MPIR-VY, cost depends on:
§ #IS: number of iterations of inner solver
§ #RR: total number of residual replacements
§ #RS: number of iterative refinement steps

§ For example, using (32,64) mixed precision:

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

§ Cost of ERD:

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

§ VY vs EDR:
§ VR-RR incurs detection overhead at each iteration (test replacement condition) and pays correction

overhead in case RR is necessary
§ EDR-RR incurs detection overhead only every ! iterations (periodicity of the test), risking to waste

work in case of stagnation from last test
§ Detection techniques are different and, therefore, also are numerical effects and overhead

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

§ Setup:
§ 123 symmetric positive definite matrices from SuiteSparse Matrix Collection (formerly UFMC)

§ Baseline solver: PCG in double precision

§ All arithmetic done in double precision

§ For MPIR variants, the coefficient matrix, the preconditioner and all iteration vectors used in the
inner solver are stored in single precision: reduced transfer cost!

§ For EDR-RR, the test is performed every ! = 100 iterations, and the maximum number of RR is set to
10

§ Cost take into account the actual number of iterations to obtain an absolute residual error below
10-7

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

 1

 10

 100

R
e

la
tiv

e
 it

e
ra

tio
n

s
to

 P
C

G
 s

o
lv

e
r

(d
o

u
b

le
-p

re
ci

si
o

n
)

Matrix case

Inner iterations

MPIR
MPIR-VY

MPIR-EDR

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Cost for Krylov solvers

 0

 0.5

 1

 1.5

 2

R
e

la
tiv

e
 s

a
vi

n
g

s
to

 P
C

G
 s

o
lv

e
r

(d
o

u
b

le
-p

re
ci

si
o

n
)

Matrix case

Estimated savings

MPIR
MPIR-VY

MPIR-EDR

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Modular precision format

§ Decouple arithmetic from storage formats:
§ FPUs only support a limited number of IEEE 754 formats (single, double and, in some architectures,

half)
§ … but we are free to store the data in memory in any customized format

§ Remember: As a memory-bound algorithm, PCG is limited by memory
bandwidth (i.e., how many bit are used to store the data)
§ Extended can be double
§ Reduced can be, e.g., 16, 24, 32, 40, 48, 56 bits
§ Maintain a single copy of the matrix with “multiple precisions” via segments

T. Grützmacher, H:. Anzt. “A modular precision format for decoupling arithmetic format
and storage format. To appear in HeteroPar 2018

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision algorithms for sparse linear algebra

§ Customize precision:
§ CG is a memory-bounded algorithm: Cost comes from moving data, not arithmetic

§ Storage for CG iteration variables in MPIR: matrix, recurrence vectors
§ Storage for block-Jacobi preconditioner

“Computing’s energy
problem”. M. Horowitz,
2014

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

§ Jacobi method based on diagonal scaling:

§ Can be used as iterative solver:

§ Can be used as preconditioner: ,

x(k+1) = x(k) + P�1b� P�1Ax(k)

Ã = P�1A

Ax = b , Ãx = b̃

b̃ = P�1b

P = diag(A)

Block-Jacobi preconditioning

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

§ Jacobi method based on diagonal scaling:

§ Can be used as iterative solver:

§ Can be used as preconditioner:

• Block-Jacobi is based on block-diagonal scaling:

• Large set of small diagonal blocks.

• Each block corresponds to one (small) linear system.

• Larger blocks typically improve convergence.

• Larger blocks make block-Jacobi more expensive.

Extreme case: one block of matrix size.

x(k+1) = x(k) + P�1b� P�1Ax(k)

Ã = P�1A

Ax = b , Ãx = b̃

b̃ = P�1b

P = diag(A)

Block-Jacobi preconditioning

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

• Block-Jacobi method typically used as preconditioner inside Krylov solver.

• Target: large, sparse linear systems.

• FEM discretizations often carry a block-structure (multiple variables per node).

• “Natural blocks” of small size (8, 12,...).

• System matrix often stored in sparse data structure (CSR).
Generate preconditioner before iterative solver starts.

Apply the preconditioner in every solver iteration via: y := P�1x

se
tu

p
Pr

ec
on

di
tio

ne
r

ap
pl

ic
at

io
n

Pr
ec

on
di

tio
ne

r

Inversion of diagonal blocks
2m3 FLOPS for block of size m

Matrix-vector multiply per block gemv

Factorization of diagonal blocks
2/3 m3 FLOPS for block of size m

2 triangular solves per block trsv

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

§ Cost of Inversion:
2mi

3 FLOPs for block of size mi.

X

blocks

2m3
i

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

§ Cost of Inversion:
2mi

3 FLOPs for block of size mi.

§ Cost of Preconditioner application:
mi

2 FLOPs for block of size mi :

§ Total memory consumption:

X

blocks

2m3
i

X

blocks

m2
i

X

blocks

m2
i

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

§ Cost of Inversion:
2mi

3 FLOPs for block of size mi.

§ Cost of Preconditioner application:
mi

2 FLOPs for block of size mi :

• Total memory consumption:

§ Energy balance for one preconditioner application (DP)*:

X

blocks

2m3
i

X

blocks

m2
i

X

blocks

m2
i

X

blocks

m2
i · (100 + 4800)

Computation/2 data read

*John Shalf (LBNL)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

§ Cost of Inversion:
2mi

3 FLOPs for block of size mi.

§ Cost of Preconditioner application:
mi

2 FLOPs for block of size mi :

• Total memory consumption:

§ Energy balance for one preconditioner application (DP)*:

X

blocks

2m3
i

X

blocks

m2
i

X

blocks

m2
i

X

blocks

m2
i · (100 + 4800)

Computation/2 data read

*John Shalf (LBNL)

Mixed Precision Idea:

• Do all calculations in working precision
• Store the block-Jacobi matrix in reduced precision

• Benefit from faster data access
• Benefit from reduced data read cost

Implications:
• Reduced preconditioner quality

• Need for more Krylov solver iterations
• Potential loss of regularity (breakdown)

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

§ 70 matrices from the SuiteSparse Matrix Collection

§ Use block-size 24 with Super-Variable agglomeration (24 is upper bound for size of blocks)

§ Report conditioning of all arising diagonal blocks

10 20 30 40 50 60 70

Test matrices

100

105

1010

B
lo

ck
 d

ia
g

o
n

a
l c

o
n

d
iti

o
n

in
g

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

10 20 30 40 50 60 70

Test matrices

100

105

1010

B
lo

ck
 d

ia
g

o
n

a
l c

o
n

d
iti

o
n

in
g

10 20 30 40 50 60 70

Test matrices

101

102

103

104

C
G

 I
te

ra
tio

n
s

double prec. block-Jacobi

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Block-Jacobi preconditioning

10 20 30 40 50 60 70

Test matrices

100

105

1010

B
lo

ck
 d

ia
g

o
n

a
l c

o
n

d
iti

o
n

in
g

10 20 30 40 50 60 70

Test matrices

1

1.5

2

2.5

C
G

 I
te

ra
tio

n
 o

ve
rh

e
a

d

double prec. block-Jacobi

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018
10 20 30 40 50 60 70

Test matrices

100

105

1010

B
lo

ck
 d

ia
g

o
n

a
l c

o
n

d
iti

o
n

in
g

10 20 30 40 50 60 70

Test matrices

1

1.5

2

2.5

C
G

 I
te

ra
tio

n
 o

ve
rh

e
a

d

double prec. block-Jacobi
single prec. block-Jacobi

Block-Jacobi preconditioning

Overhead compared to double precision algorithm.

Smaller is better!

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

10 20 30 40 50 60 70

Test matrices

100

101

102

C
G

 I
te

ra
tio

n
 o

ve
rh

e
a
d

double prec. block-Jacobi
single prec. block-Jacobi
half prec. block-Jacobi

10 20 30 40 50 60 70

Test matrices

100

105

1010

B
lo

ck
 d

ia
g

o
n

a
l c

o
n

d
iti

o
n

in
g

Block-Jacobi preconditioning

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision Block-Jacobi preconditioning

Adaptive Precision Idea:

• All computations use double precision!
• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision Block-Jacobi preconditioning

*John Shalf (LBNL)

• 4800 pJ for double precision (64 bit)

• 2400 pJ for single precision / integers (32 bit)

• 1200 pJ for half precision (16 bit)

Energy model:

Adaptive Precision Idea:

• All computations use double precision!
• Store distinct blocks in different formats

• Use single precision as standard storage format

• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning

of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision Block-Jacobi preconditioning

Operation Memory volume # per CG loop Energy est.

CSR-SpMV nz double + nz int + n int + 2n double 1 (nz + 2n) * 4800 pJ + (nz + n) * 2400 pJ

axpy 3n double 3 9n * 4800 pJ

dot 2n double 2 4n * 4800 pJ

preconditioner [used format] 1 * ?

How much data we need to read/write in a Conjugate Gradient (CG) loop:

Adaptive Precision Idea:

• All computations use double precision!

• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision Block-Jacobi preconditioning

Adaptive Precision Idea:

• All computations use double precision!
• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

Energy model for block-Jacobi-CG

• We ignore computational cost, only memory access
• No data (matrix / vector) is cached, only DRAM reads
• CG outer solver (in DP)
• Adaptive precision for the block-Jacobi preconditioner

Block-Jacobi CG

• Ax=b with x:=0 and b:=A*1

• Relative residual stopping crit. 1e-9

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Adaptive-precision Block-Jacobi preconditioning

Adaptive Precision Idea:

• All computations use double precision!
• Store distinct blocks in different formats
• Use single precision as standard storage format
• Where necessary: switch to double
• For well-conditioned blocks use half precision

Estimate conditioning
of diagonal block

> 106

< 101

Store block in single precision

Store block in double precision

Store block in half precision

10 20 30 40 50 60 70

Test matrices

0.5

1

1.5

2

E
n
e
rg

y
e
st

im
a
te

double prec. block-Jacobi
single prec. block-Jacobi
adaptive precision block-Jacobi

Adaptive-precision algorithms for sparse linear algebraNIPS/OPRECOMP Summer School 2018

Outline

§ A recipe to saving energy: Optimize performance!!!

… but other “chefs” may propose a different recipe

1. Choose the “right” hardware
2. Dynamic Voltage-Frequency Scaling (DVFS)
3. Dynamic Concurrency Throttling (DCT)
4. Avoid polling
5. Near Threshold Voltage Computing (NTVC)
6. Energy-proportional hardware
7. Virtualization of HPC resources
8. Approximate computing/adaptive precision

Adaptive-Precision Algorithms for Sparse Linear Algebra

Enrique S. QUINTANA-ORTÍ
Professor of Computer Architecture
Group leader High Performance Computing & Architectures (HPC&A) group
http://www.uji.es/~quintana

